Linear-time Sorting

Review

« We have now introduced several algorithms that can sort n numbers
In O(nlogn) time.
— Merge sort and heapsort achieve this upper bound in the worst
case;
— Quicksort achieves it on average.

— Moreover, for each of these algorithms, we can produce a
sequence of n input numbers that causes the algorithm to run in
Q(nlogn) time.

« we showed that Q(nlogn) time Is necessary, in the worst case,
to sort an n-element sequence with a comparison-based sorting
algorithm.

Linear-time Sorting
(Integer sort)

To achieve linear-time sorting of n elements:

* Assume keys are integers in the range [0, N-1]

« \We can use other operations instead of comparisons.
« \We can sort in linear time when N is small enough.

Bucket Sort & Radix Sort

Counting sort

« Counting sort assumes that each of the n input elements is an integer in
the range 0 to k, for some integer k. When k = O(n), the sort runs in O(n)
time.

« we assume that the input is an array A[1..n], and the array B[1..n] holds
the sorted output, and the array C[1..k] provides temporary working
storage.

COUNTING-SORT(A, B.k)
I let C[O..k] be anew array
2 fori =0tok
3 Cli]=0
4 for j = 1to A.length
5 ClAlj1] = ClA[j]l + 1
6 // C[i] now contains the number of elements equal to i.
7 fori = 1tok
8 Clil]=Cli]|+ C[i —1]
9 // C[i] now contains the number of elements less than or equal to 7.
10 for j = A.length downto |
L B[C[A[j]]] = Al/]
12 ClA[j]l = ClA[j]] -1

Bucket Sort & Radix Sort

Counting sort-Run Time

How much time does counting sort require? The for loop of lines 2-3 takes
time G(k), the for loop of lines 4-5 takes time ®(n), the for loop of lines 7-8 takes
time ®(k), and the for loop of lines 10-12 takes time ®(n). Thus, the overall time
is ®(k + n). In practice, we usually use counting sort when we have kK = O(n), in
which case the running time is ®(n).

Counting sort beats the lower bound of Q(n lgn) proved - because
it is not a comparison sort. In fact, no comparisons between input elements occur
anywhere in the code. Instead, counting sort uses the actual values of the elements
to index into an array. The €2(n 1g n) lower bound for sorting does not apply when
we depart from the comparison sort model.

Bucket Sort & Radix Sort

1 2 3 5 6 8 1 2 3 4 5 6 7 8
0o 1 2 3 5 Cl|2|2(4]|7 3 0 1 4 5
Cl|2/0|12[3]|0]1 Cl|2|2/4|6|7]|8
(a) (b) (c)
1 3 4 5 6 7 8 1 2 3 4 5 8
B0 B0 33 1 L2034 5
0 1 3 4 5 0 1 3 5 Bl0o|0[2]|2(3|3|3|5
cCl|l1|2|4|6|7|8 cl{1|2]4]|5 8
(d) (e) ()

The operation of COUNTING-SORT on an input array A[l .. 8], where each element
of Ais a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C after
line 5. (b) The array C after line 8. (c)—(e) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 1012, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B.

Bucket Sort & Radix Sort

Exercises

Using the example on slide 6 as a model, illustrate the operation of
COUNTING-SORT on the array A={6,0, 2,0, 1, 3,4, 6, 1, 3, 2}

Describe an algorithm that, given n integers in the range 0 to k,
preprocesses its input and then answers any query about how many
of the n integers fall into a range [a .. B] in O(1) time. Your
algorithm should use O(n+k) preprocessing time.

Lexicographic Order

« Ad-tuple is a sequence of d keys (ki ks, ..., ky), where key k; is said
to be the i-th dimension of the tuple

« The lexicographic order of two d-tuples is recursively defined as
follows

(X1, Xy +eey Xg) < (Y1 Yor eer Vo)
<
(X <Y1) V(X3 =Y A (Xgy eeey Xg) < (Y25 oe01 Ya))
that is, tuples are compared by the first dimension, then by the
second, etc.

Lexicographic-Sort

Let stableSort(S, C) be a stable sorting | Algorithm lexicographicSort(S)
algorithm that uses comparator C Input sequence S of d-tuples

« C, is the comparator that compares Output sequence S sorted in
two tuples by their i-th dimension lexicographic order

for 1 « d downto 1

Lexicographic-sort sorts a sequence of stableSort(S, C,)

d-tuples in lexicographic order by

executing d times algorithm stableSort, |
(one per dimension) Example:

* runsin O(dT(n)) time, where T(n) (7,4,6) (5,1,5) (2,4,6) (2,1,4) (3,2,4)
IS the running time of stableSort (2.1.4) (3.2.4) (5.1.5) (7.4.6) (2,4.6)
(2,1,4) (5,1,5) (3,2,4) (7,4,6) (2,4,6)

(2,1,4) (2,4,6) (3,2,4) (5,1,5) (7,4,6)

Bucket Sort & Radix Sort 9

Radix Sort

A specialization of lexicographic-sort that uses count-sort as the
stable sorting algorithm in each dimension

Radix-sort is applicable to tuples where the keys in each dimension
are integers in the range [0, N — 1]

Radix-sort runs in time O(d(n + N))

Algorithm radixSort(S, N)

Input sequence S of d-tuples such that (0, ..., 0) < (X4, ..., X4) and
(Xgs eees Xg) (N =1, ..., NI1) for each tuple (X3 .oy Xg) IN'S
Output sequence S sorted in lexicographic order

for i < d downto 1
CountSort(S, N)

Bucket Sort & Radix Sort 10

Radix Sort for Binary Numbers

Consider a sequence of n b-bit integers
X=X _ 1 e X1Xp
We represent each element as a b-tuple of integers in the range [0, 1]
and apply radix-sort with N = 2
This application of the radix-sort algorithm runs in O(bn) time

For example, we can sort a sequence of 32-bit integers in linear time

Algorithm binaryRadixSort(S)

Input sequence S of b-bit integers
Output sequence S sorted

replace each element x of S with the item (0, x)
fori<~Otob-1

replace the key k of
each item (k, x) of S with bit x; of x

CountSort(S, 2)

Bucket Sort & Radix Sort 11

A

D

Example

Use radix sort to sort sequence of 4-bit integers

E @AE @DE @BE

Bucket Sort & Radix Sort

12

Exercises

Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the fol-
lowing list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB,
BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

Show how to sort n integers in the range O to n° — 1 in O(n) time.

Bucket Sort & Radix Sort

13

Bucket Sort

Counting sort assumes that the input consists of integers in a small
range,

bucket sort assumes that the input is generated by a random process
that distributes elements uniformly and independently over the
Interval [0,1).

Bucket sort divides the interval [0,1) into n equal-sized subintervals,
or buckets, and then distributes the n input numbers into the
buckets.

To produce the output, we simply sort the numbers in each bucket
and then go through the buckets in order, listing the elements in
each.

The worst-case running time for bucket sortis 0(n?) if we like
Insertion sort or it will be O(nlong) if we use merge sort.

Bucket Sort

With the bucket sort, we assumes that the input is an n-element array
A and that each element A[i] in the array satisfies 0 < A[i] < 1.

There is an auxiliary array B[1 .. n-1] of linked lists (buckets) and
assumes that there is a mechanism for maintaining such lists.

BUCKET-SORT(A)
let B[O..n — 1] be a new array
n = A.length
fori =0ton—1
make B[i] an empty list
fori = l1ton
insert A[i] into list B[|nA[i]]]
fori =0ton—1
sort list B[i] with insertion sort
concatenate the lists B[0], B[1]..... B[n — 1] together in order

LIS T S I

O o0~ v e

Bucket Sort & Radix Sort 15

18

A7

.39

.26

12

21

n e

12

s Lo

23

.68

(a)

0

[

=1 & Lh Lok

oo

B
/

——.12] =17/]

=121 23] §—>26]/|
139171

7

d

——>1.68]/]

.72 >8]/]

~

.94 /|

Bucket Sort & Radix Sort

16

